1,575 research outputs found

    Ice in the Antarctic polar stratosphere

    Get PDF
    On six occasions during the 1987 Airborne Antarctic Ozone Experiment, the Polar Stratospheric Cloud (PSC) ice crystals were replicated over the Palmer Peninsula at approximately 70 deg South. The sampling altitude was approximately 60 to 65 thousand feet, the temperature range was -83.5 to -72C and the atmosphere was subsaturated in all cases. The collected crystals were predominantly complete and hollow prismatic columns with maximum dimensions up to 217 microns. Evidence of scavenging of submicron particles was detected on several crystals. While the replicated crystal sizes were larger than anticipated, their relatively low concentration results in a total surface area less than one tenth that of the sampled aerosol particles. The presence of large crystals suggest that PSC ice crystals can play a very important role in stratospheric dehydration processes

    Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    Get PDF
    The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 014037]. This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra density scan is studied, which traverses through a Linear (LOC) to Saturated (SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ITG modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulenc

    Antarctic polar stratospheric aerosols: The roles of nitrates, chlorides and sulfates

    Get PDF
    Nitric and hydrochloric acids have been postulated to condense in the winter polar stratosphere to become an important component of polar stratospheric clouds. One implication is that the removal of NO(y) from the gas phase by this mechanism allows high Cl(x) concentrations to react with O3, because the formation of ClNO3 is inhibited. Contributions of NO3 and Cl to the stratospheric aerosol were determined during the 1987 Airborne Antarctic Ozone Experiment by testing for the presence of nitrates and chlorides in the condensed phase. Aerosol particles were collected on four 500 micron diameter gold wires, each pretreated differently to give results that were specific to certain physical and chemical aerosol properties. One wire was carbon-coated for concentration and size analyses by scanning electron microscopy; X-ray energy dispersive analyses permitted the detection of S and Cl in individual particles. Three more wires were coated with Nitron, barium chloride and silver nitrate, respectively, to detect nitrate, sulfate and chloride in aerosol particles. All three ions, viz., sulfates, nitrates and chlorides were detected in the Antarctic stratospheric aerosol. In terms of number concentrations, the aerosol was dominated by sulfates, followed by chlorides and nitrates. An inverse linear regression can be established between nitrate concentrations and ozone mixing ratio, and between temperature and nitrates

    Signs Workshop: the importance of natural gestures in the promotion of early communication skills of children with developmental disabilities

    Get PDF
    This article emphasises the importance of natural gestures and describes the framework and the development process of the “Signs Workshop” CD-ROM, which is a multimedia application for the promotion of early communication skills of children with developmental disabilities. Signs Workshop CD-ROM was created in the scope of Down’s Comm Project, which was financed by the Calouste Gulbenkian Foundation, and is the result of a partnership between UNICA (Communication and Arts Research Unit of the University of Aveiro) and the Portuguese Down Syndrome Association (APPT21/Differences)

    Global Linear and Nonlinear Gyrokinetic Simulations of Tearing Modes

    Full text link
    To better understand the interaction of global tearing modes and microturbulence in the Madison Symmetric Torus (MST) reversed-field pinch (RFP), the global gyrokinetic code \textsc{Gene} is modified to describe global tearing mode instability via a shifted Maxwellian distribution consistent with experimental equilibria. The implementation of the shifted Maxwellian is tested and benchmarked by comparisons with different codes and models. Good agreement is obtained in code-code and code-theory comparisons. Linear stability of tearing modes of a non-reversed MST discharge is studied. A collisionality scan is performed to the lowest order unstable modes (n=5n=5, n=6n=6) and shown to behave consistently with theoretical scaling. The nonlinear evolution is simulated, and saturation is found to arise from mode coupling and transfer of energy from the most unstable tearing mode to small-scale stable modes mediated by the m=2m=2 tearing mode. The work described herein lays the foundation for nonlinear simulation and analysis of the interaction of tearing modes and gyroradius-scale instabilities in RFP plasmas

    Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall

    Full text link
    The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]. In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by EĂ—B\mathbf{E}\times\mathbf{B} rotation shear.Comment: accepted for publication in Nuclear Fusio

    Quantum algorithm and circuit design solving the Poisson equation

    Get PDF
    The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error \varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in \varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in New Journal of Physic

    Reduced models for ETG transport in the pedestal

    Get PDF
    This paper reports on the development of reduced models for electron temperature gradient (ETG) driven transport in the pedestal. Model development is enabled by a set of 61 nonlinear gyrokinetic simulations with input parameters taken from the pedestals in a broad range of experimental scenarios. The simulation data has been consolidated in a new database for gyrokinetic simulation data, the Multiscale Gyrokinetic Database (MGKDB), facilitating the analysis. The modeling approach may be considered a generalization of the standard quasilinear mixing length procedure. The parameter η, the ratio of the density to temperature gradient scale length, emerges as the key parameter for formulating an effective saturation rule. With a single order-unity fitting coefficient, the model achieves an RMS error of 15%. A similar model for ETG particle flux is also described. We also present simple algebraic expressions for the transport informed by an algorithm for symbolic regression.</p
    • …
    corecore